Foundations of Artificial Intelligence

Alberto Maria Metelli

Exercise Session
11-24-2023

Exercise 5.3

Solve the 4-Queens problem. The problem consists of placing 4 queens on a 4×4 chess board so that no queen can attack any other. Formulate the problem as a constraint satisfaction problem and solve it using backtracking with minimum-remaining-values heuristic and forward checking. Only one solution is required.

Exercise 5.3

$X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
x_{i} is the row at which the queen in column i is placed
$D=\left\{D_{1}, D_{2}, D_{3}, D_{4}\right\}$
$D_{1}=D_{2}=D_{3}=D_{4}=\{1,2,3,4\}$

We can express the constraints in a compact form, with $\mathrm{i} \in\{1,2,3,4\}$ and $\mathrm{j} \in\{1,2,3\}$:

$$
C\left(x_{i}, x_{i+j}\right)=\{(a, b): a, b \in\{1,2,3,4\},|a-b| \notin\{0, j\}\}
$$

Exercise 5.3

In an extensive way:

$$
\begin{gathered}
C\left(X_{1}, X_{2}\right)=\{\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,4\rangle,\langle 3,1\rangle,\langle 4,1\rangle,\langle 4,2\rangle\} \\
C\left(X_{1}, X_{3}\right)=\{\langle 1,2\rangle,\langle 1,4\rangle,\langle 2,1\rangle,\langle 2,3\rangle,\langle 3,2\rangle,\langle 3,4\rangle,\langle 4,1\rangle,\langle 4,3\rangle\} \\
C\left(X_{1}, X_{4}\right)=\{\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,1\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 3,1\rangle,\langle 3,2\rangle,\langle 3,4\rangle,\langle 4,2\rangle,\langle 4,3\rangle\} \\
C\left(X_{2}, X_{3}\right)=C\left(X_{1}, X_{2}\right) \\
C\left(X_{2}, X_{4}\right)=C\left(X_{1}, X_{3}\right) \\
C\left(X_{3}, X_{4}\right)=C\left(X_{1}, X_{2}\right)
\end{gathered}
$$

Exercise 5.3

Even if not requested by the exercise, we try to apply AC-3:

$$
\begin{aligned}
& \mathrm{Q}=\left\{\mathrm{x}_{1} \rightarrow \mathrm{x}_{2}, \mathrm{x}_{2} \rightarrow \mathrm{x}_{1}, \mathrm{x}_{1} \rightarrow \mathrm{x}_{3}, \mathrm{x}_{3} \rightarrow \mathrm{x}_{1}, \mathrm{x}_{1} \rightarrow \mathrm{x}_{4}, \mathrm{x}_{4} \rightarrow \mathrm{x}_{1}, \mathrm{x}_{2} \rightarrow \mathrm{x}_{3}, \mathrm{x}_{3}\right. \\
& \left.\rightarrow \mathrm{x}_{2}, \mathrm{x}_{2} \rightarrow \mathrm{x}_{4}, \mathrm{x}_{4} \rightarrow \mathrm{x}_{2}, \mathrm{x}_{3} \rightarrow \mathrm{x}_{4}, \mathrm{x}_{4} \rightarrow \mathrm{x}_{3}\right\}
\end{aligned}
$$

$x_{1} \rightarrow x_{2}$: nothing
$x_{2} \rightarrow x_{1}$: nothing
$x_{1} \rightarrow x_{3}$: nothing

Exercise 5.3

$x_{3} \rightarrow x_{1}:$ nothing
$\mathrm{X}_{1} \rightarrow \mathrm{X}_{4}:$ nothing
$x_{4} \rightarrow x_{1}$: nothing
$x_{2} \rightarrow x_{3}:$ nothing
$x_{3} \rightarrow x_{2}$: nothing
$x_{2} \rightarrow x_{4}:$ nothing

$$
\begin{aligned}
& x_{4} \rightarrow x_{2}: \text { nothing } \\
& x_{3} \rightarrow x_{4}: \text { nothing } \\
& x_{4} \rightarrow x_{3}: \text { nothing }
\end{aligned}
$$

In this problem, AC-3 is unable to shrink the domains, but not all assignments of domain values is a solution!

Exercise 5.3

We apply backtracking with:

- minimum-remaining-values heuristic (MRV)
- forward checking (FC)

MRV: all domains have 4 values
$D_{4}=\{1,2,3,4\} \rightarrow$ lexicographical order

Propositional Logic (8 points). Consider the following Knowledge Base (KB) in propositional logic: P
$(P \wedge Q) \rightarrow R$
$(S \vee T) \rightarrow Q$
T
Question 1. Apply the resolution inference algorithm (using the unit resolution strategy) to establish whether R is entailed by the KB.
Report all the steps.
Question 2. According to what you found in Question 1, is R entailed by the KB? Why?
Question 3. Is the unit resolution strategy complete in general? Why?

